
JazzScheme: Evolution of a Lisp-Based Development System

Guillaume Cartier Louis-Julien Guillemette
Auphelia Technologies Inc.
{gc,ljg}@auphelia.com

Abstract
This article introduces JazzScheme, a development system based
on extending the Scheme programming language and the Gambit
system. JazzScheme includes a module system, hygienic macros,
object-oriented programming, a full-featured cross-platform appli-
cation framework, a sophisticated programmable IDE and a build
system that creates executable binaries for Mac OS X, Windows
and Linux. JazzScheme has been used for more than 10 years to
develop commercial software.

1. Introduction
Lisp has a long tradition of sophisticated programming environ-
ments entirely built in Lisp. This tradition can be traced as far back
as the Lisp Machines [22] that even went to the extent of running
on Lisp-dedicated hardware. At the time, those environments were
a driving force in the industry, pushing the envelope of what a pro-
gramming environment could do.

More recent Lisp environments include Emacs [9], Macintosh
Common Lisp [7] (now Clozure CL [5]), Allegro CL [1], Lisp-
Works [11], Cusp [6] and DrScheme [12] (now DrRacket [13]).
Yet, few of those offer a complete solution to the following needs:

• being open-source
• being entirely built in their own language for fast evolution and

complete integration
• being able to handle large scale enterprise development

In this article we introduce JazzScheme, a Lisp-based develop-
ment system focused on enterprise development, which has been
used for more than 10 years to develop commercial software.

JazzScheme is an open-source development system comprised
of the Jazz platform and the Jedi IDE. The Jazz platform comes
with a programming language that extends Scheme and Gambit [8],
and that includes a module system, hygienic macros and object-
oriented programming. The platform features a cross-platform ap-
plication framework and a build system that creates executable bi-
naries for Mac OS X, Windows and Linux. Jedi is a modern, pro-
grammable Lisp-based IDE with advanced features targeted at the
Lisp family of languages.

This article starts with a personal account by the creator and
main developer of JazzScheme, the first author, on the context of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2010 Workshop on Scheme and Functional Programming

its birth and evolution. We then provide an overview of the Jazz
platform and the Jedi IDE.

2. History and evolution
This section is written in the first person as it is a personal account
of the history and evolution of JazzScheme by its creator.

The Little Lisper: Love at first sight
What really started this long adventure was a visit to the university
library by a mathematics undergraduate student more than 20 years
ago. At that time I already had a passion for programming but
apart from the pure thrill of it, no language had really touched my
mathematical sensibility. It all changed the day I discovered a tiny
leaflet called The Little Lisper [18]. It was electric. Love at first
sight! From that day, I knew I wanted to do everything necessary to
be able to program and create elegant and complex software using
that language. Many thanks to its authors! Amusingly, it would only
be 20 years later that I would get to write my first pure Scheme line
of code!

Roots
In the years that followed I ended up doing most of my program-
ming in LeLisp [16], ZetaLisp [22] and Common Lisp [21]. Many
JazzScheme concepts can be traced to that heritage:

• Multiple values
• Optional and keyword parameters
• Logical pathnames
• User extensible readtable
• Formatted output
• Sequences
• Restarts
• Object-oriented programming
• Metaclasses
• Generic functions
• Loop iteration macro (more precisely Jonathan Amsterdam’s

iterate macro)

Common Lisp After all those years of writing Common Lisp
code, my dream was still to be able to program in Scheme for its pu-
rity and beautiful concepts. But Common Lisp offered so many fea-
tures I needed, which pushed me into making many naive attempts
to bridge the two worlds. Those attempts ended up deepening my
understanding of the issues but still left me with the unsatisfying
choice of having to choose between Scheme and Common Lisp.

Prisme In 1990 I graduated with a Master’s Degree in mathemat-
ics and started looking for a job as a programmer. By chance, I met
an old friend from the chess world, Renaud Nadeau, who had re-
cently started his own company in Montreal, Micro-Intel, based on



Prisme, a Scheme-inspired language. Joining the company was ap-
pealing as it offered a dynamic work environment focused on the
production of high-quality multimedia titles. On the other hand,
Prisme, compared to Macintosh Common Lisp (MCL) [7], the de-
velopment system I was using at the time, seemed primitive. In the
end, the prospect of working with a dynamic team won me over
and I joined Micro-Intel.

I then discovered that having complete access to the source code
of the system had enormous benefits. After just a couple of weeks
of intense hacking, I had added to Prisme most of my favorite tools
from MCL.

I also discovered that I thoroughly enjoyed building real-life
concrete applications. Highly graphical applications with real end
users and real needs. This passion would be the guiding light
during all the years that would eventually lead to the creation of
JazzScheme, to have the best possible development system to build
those applications.

Birth of “classic” Jazz
After working with Micro-Intel for 8 years, evolving Prisme, cre-
ating a complete IDE for it called Visual Prisme and writing many
applications with their wonderful team of talented graphic artists,
domain specialists and programmers, I wanted to learn what was
at the time a complete mystery to me: the Information Technology
(IT) world, e.g. systems programming for large corporations. I left
Micro-Intel and became immersed in the world of databases, large-
scale enterprise systems made of many subsystems, legacy code,
distributed computing and languages such as Visual Basic and Java.

This is also the time, in 1998, when I started the Jazz project.
I felt at the time that no other language than Lisp came close to
having the potential to do what I wanted a development system to
do. Many interesting Lisp systems were around but, unfortunately,
open-source was still in its infancy and so they were all closed-
source. The Prisme experience had taught me the incredible flexi-
bility of having access to the source code of every part of a system.

Having no rights to Prisme, I could not reuse the result of all
those years of work. But in the end, starting from a clean slate was
the best thing that could have happened to Jazz.

Visual Basic I was working in Visual Basic at the time and using
Visual Basic’s IDE really made me aware of the productivity gains
that can be achieved by using a feature-rich IDE to code and debug.
I also discovered Visual Basic’s GUI designer, which was one of
the best available at the time. Its property-based approach would
become the seeds of Jazz’s component system.

C++-based At that stage, I made the first and most crucial de-
sign decision so far, that is to write the whole interpreter for the
functional and object-oriented core of the language in C++. The
decision was primarily based on my experience with Prisme, for
which the interpreter was written in C++.

In retrospect, I believe it would have been better to layer the
system in order to minimize the amount of code written in a foreign
language, and probably write only the functional layer in C++,
building the object-oriented system on top of it using macros. This
design decision would cost me many months of hard refactoring
work later on, when Jazz was ported from C++ to Gambit. On the
other hand, being able to write the first version of the system really
quickly by leveraging previous experience in similar systems was a
great gain.

Windowing system One noteworthy design decision was to use
Windows’ common controls, even though their limited functional-
ity was no secret. The decision was made for two reasons:

1. After years of using the sophisticated Lisp IDE characterizing
Prisme, I wanted to shorten as much as possible the time needed

to build a first version of the new IDE in order to be able to do
all my development with it as soon as possible.

2. Even though I wanted to implement the new controls entirely
in Jazz, I knew that implementing a complete windowing sys-
tem in Lisp would put enormous performance pressure on the
language, which would force me to implement parts of the lan-
guage like an optional type system early, diverting work from
the IDE.

In the end, it was a good decision even though a lot of code had
to be rewritten.

Another one joins In 2004, Stéphane Le Cornec joined in as a
part-time contributor to Jazz. This talented individual and strong
believer in the expressivity of Lisp-based languages has made many
contributions to JazzScheme since then.

Jazz becomes open-source
A couple of years later, around 2001, I met Marc Feeley, Gam-
bit’s author (we later discovered that we were both present at the
1990 ACM Conference on LISP and Functional Programming, in
Nice, France, but didn’t know each other). After many interesting
exchanges, Marc suggested porting Jazz from its C++ base to Gam-
bit. The idea fit perfectly with one of my dreams, i.e. to do with-
out the C++ layer. Marc wrote a proof-of-concept implementation
of the core concepts of Jazz in Gambit, and the performance tests
were convincing enough that we deemed the project feasible. At
that time, though, Gambit and Jazz were still closed-source, which
seriously limited the possibilities for collaboration.

In 2006, I decided to make the move to open-source and Marc
had already done a similar move for Gambit some time before. The
stage was set to port Jazz from C++ to Gambit. To reflect the fact
that Jazz would finally be a proper implementation of Scheme, it
was renamed JazzScheme.

The porting begins The first obstacle at that point was that, try as
I may, I couldn’t get Gambit to build on Windows, so I decided to
look for other Scheme systems. This was acceptable as it was a goal
to make JazzScheme as portable as possible across major Scheme
implementations. To make a long story short, during the first six
months, JazzScheme was running on Chicken [4], Bigloo [3] and
PLT Scheme (now Racket [13]) but not Gambit! At that time Marc
sent me a prebuilt version of Gambit for Windows and I was finally
able to start developing JazzScheme for Gambit, the system that I
already liked a lot and have learned to love since then.

I would like to personally thank Marc Feeley for his unwavering
support and availability all those years. He was always prompt to
fix bugs, add missing features to Gambit, and was always available
for intense brainstorming sessions on how to improve those needed
features into great additions to Gambit.

The present version of JazzScheme is Gambit-dependent but the
portable core design remains, so it should be possible to port Jazz-
Scheme to other major Scheme implementations with a moderate
amount of work.

Scheme was just too great! At that point, rewriting the C++
kernel into Scheme made the code so simple and clear that almost
everything I had ever wanted to add to the Jazz language but hadn’t
been able to due to the difficulties of coding in a low-level language
as C++, I was then able to do. The language was progressing by
leaps and bounds.

Unfortunately, JazzScheme ended up to be a radically different,
incompatible language compared to the old Jazz, forcing not only
the implementation of a new language but also the porting of the
3000 or so classes constituting the existing libraries.

Here is a partial list of the incompatible features that were added
to the new language:



• R5RS [15] conformance
• A new module system
• A new object-oriented syntax enabling tighter integration with

the functional layer

To make the porting effort even more difficult, we started port-
ing JazzScheme’s GUI from being Windows specific to Cairo and
X11; the whole process took two years.

So we ended up having to:

• Port the language from C++ to Gambit
• Port the existing libraries from the old Jazz to the radically

different JazzScheme
• Port all the UI code from being Windows specific to being

multi-platform

Lots of fun!

Lisp’s syntax saves the day What saved the project at that point
was Lisp’s syntax as data and Jedi’s many refactoring tools. When a
change couldn’t be done with a search and replace, it could often be
done thanks to Jedi’s ability to run a textual macro at every found
occurrence. If that didn’t work either, I would then write some
Jazz code that would be run at each found occurrence, analyze the
Scheme expression and output the replacement in the text buffer.

95× slower The first working version of the Gambit-based Jazz-
Scheme turned out to be 95× slower than the old C++-based Jazz.
Even load time was abysmal. A rough projection showed that it
would take forever for Jedi to load completely at that stage. A big
part of the problem was due to the naive quick implementation of
many core features, but even apart from that, the new language was
still immensely slower.

Statprof comes to the rescue Fortunately, Gambit has a statistical
profiling tool called statprof [19] written by Guillaume Germain.

How such a useful tool as statprof could be written in so little
code is remarkable. It is a tribute to Gambit and Scheme’s clean de-
sign around powerful concepts as continuations. Statprof leverages
Gambit’s interrupt-based architecture and continuations to imple-
ment a complete statistical profiler in only 50 lines of Gambit code!

Using statprof, it was easy to identify all the hotspots. Here is a
partial list:

Functions to macros It turned out that function call overhead
was too great to implement the equivalent of the C++ low-level
virtual table dispatch. Fortunately, Gambit offers access to a low-
level unchecked API using ## functions like ##car, ##cdr and
##vector-ref. Most of these functions get compiled into native
Gambit Virtual Machine (GVM) [17] calls that get turned into
simple C code themselves. For instance, a call to ##vector-ref
will end up generating an array indexing operator in C.

To harness this power safely, though, we created an abstract
macro layer on top of it where you could decide at build time if the
macros should call the safe functions or the low-level ones without
having to modify any source code. Those macros are all prefixed
by %%, for example %%car.

More precisely, JazzScheme’s build system was designed to
support multiple configurations where you can specify the safety
level for each configuration:

• core: jazz will generate safe code for every call even internal
implementation calls

• debug: jazz will generate safe user code
• release: jazz will generate unchecked code

C inlining of class-of Statprof also showed that optimizing
class-of was critical. Unfortunately, optimizing class-of us-
ing only Scheme code was not possible. Because Jazz supports
using Scheme native data types in an object-oriented fashion, the
implementation of class-of was forced to use an inefficient cond
dispatch:

(define (jazz.class-of-native expr)
(cond ((%%object? expr) (%%get-object-class expr))

((%%boolean? expr) jazz.Boolean)
((%%char? expr) jazz.Char)
((%%fixnum? expr) jazz.Fixnum)
((%%flonum? expr) jazz.Flonum)
((%%integer? expr) jazz.Integer)
((%%rational? expr) jazz.Rational)
((%%real? expr) jazz.Real)
((%%complex? expr) jazz.Complex)
((%%number? expr) jazz.Number)
((%%null? expr) jazz.Null)
((%%pair? expr) jazz.Pair)
((%%string? expr) jazz.String)
((%%vector? expr) jazz.Vector)
...
))

Using Gambit’s ##c-code C inlining special-form and Marc’s
in-depth knowledge of Gambit’s memory layout for objects, it was
possible to rewrite class-of into the following efficient version:

(jazz.define-macro (%%c-class-of obj)
‘(or (\#\#c-code #<<end-of-c-code

{
___SCMOBJ obj = ___ARG1;
if (___MEM_ALLOCATED(obj))
{

int subtype = (*___UNTAG(obj) & ___SMASK) >> ___HTB;
if (subtype == ___sJAZZ)

___RESULT = ___VECTORREF(obj,0);
else if (subtype == ___sSTRUCTURE)

___RESULT = ___FAL;
else

___RESULT = ___BODY_AS(___ARG2,___tSUBTYPED)[subtype];
}
else if (___FIXNUMP(obj))

___RESULT = ___ARG3;
else if (obj >= 0)

___RESULT = ___ARG4;
else

___RESULT = ___BODY_AS(___ARG5,___tSUBTYPED)[___INT(___FAL - obj)];
}
end-of-c-code
,obj ;; ___ARG1
jazz.subtypes ;; ___ARG2
jazz.Fixnum ;; ___ARG3
jazz.Char ;; ___ARG4
jazz.specialtypes ;; ___ARG5
)

(jazz.structure-type ,obj)))

Gambit based kernel faster than the old C++ kernel In the end,
Gambit performed above all expectations (except maybe Marc’s!)
enabling the conversion of 200,000+ lines of C++ code into about
15,000 lines of Scheme code and improving the general perfor-
mance of JazzScheme by a factor of about 2.

The porting of such a large code base with so many needs also
forced Gambit to evolve during those years, ironing out many bugs
in the process.



If JazzScheme ever gets ported to other Scheme systems, it
could end up being an interesting large-scale benchmark of all those
systems.

Jazz as a macro over Scheme I would like to elaborate on how all
of this was possible because of Lisp’s ability to extend the language
using macros, which has always been one of its greatest strengths.

Traditionally, a language is implemented using another lower-
level target language. The implementer usually writes a compiler
that generates code in this target language and sometimes goes
through the trouble of creating an interpreter that can be used for
rapid development. Both writing a compiler and an interpreter are
complex tasks which require years of dedicated effort to attain a
high level of maturity. Also, if for simplicity purposes the com-
piler’s target language is higher level and accessed through func-
tion calls, the danger is that the overhead of the function calls in
the compiled code can become prohibitive.

The new Jazz language completely does away with having to
write a compiler and interpreter by being implemented entirely
as a macro over Gambit. This enables complete reuse of all the
efforts dedicated to Gambit over the years and can be done with
no performance overhead. This was by and large the main reason
why the Jazz language implementation went from 200,000+ lines
of C++ code to about 15,000 lines of Scheme code that even
implemented many new features not found in the old Jazz!

I now see Gambit with its minimalist design focusing on key
systems, as a wonderful language creation toolkit. It is the authors’
opinion that Gambit could be used to implement many other lan-
guages using the same approach, even languages outside the Lisp
family.

Object-oriented approach One of the most difficult decisions in
the design of JazzScheme has to be how to implement object-
orientation. Having used Common Lisp for many years, I was
familiar, of course, with CLOS [20] and generic functions. In fact,
I found very attractive how generic functions unify the functional
and object-oriented layers of Common Lisp. On the other hand, the
old Jazz object-orientation being based around class encapsulation,
I was also painfully aware of how class encapsulation, when used
where natural, could help manage a large code base like the old
Jazz’s 3000+ classes.

So, after many unsuccessful attempts at finding a totally satis-
fying solution that would have the advantages of both approaches,
I finally decided that JazzScheme would support both approaches
and that class encapsulation would be used where natural, but that
we would also be able to rely on generic functions for more com-
plex patterns.

A call to an encapsulated method foo on an instance x is
represented using a special ~ syntax:

(foo~ x)

This syntax was chosen to make it as close as possible to a
function call. Internally, it is referred to as a dynamic dispatch
as JazzScheme will dynamically determine the class of x on first
call and cache the offset of the foo method in the class vtable for
efficient dispatch. If the type inference system can determine the
class of x at compile time, it will be used.

Declarative language Another important design decision was to
make JazzScheme a declarative language.

In a production environment, Scheme’s dynamic nature, where
definitions are only known at run time, can hurt greatly as any
reference to an undefined symbol will only be known at run time,
when the program happens to run at that exact place.

JazzScheme was designed to have a declarative structure to
solve that problem. The code walker resolves all symbols at walk

time and reports any unresolved symbol at that time. We say walk
time instead of the more usual compile time as JazzScheme code
can end up being code walked in three different situations:

• when compiling,
• when loading an interpreted module,
• when doing a live evaluation.

The declarative version of Scheme’s define is the definition
special form, which is so unsettling to new JazzScheme users
coming from the Scheme world. There is really nothing strange
about it, it is just a declarative version of define whose access can
be controlled using a modifier such as private or public as in:

(definition public (relate x y)
(cond ((< x y) -1)

((> x y) 1)
(else 0)))

JazzScheme also fully supports the more familiar approach of
explicitly exporting functionality using an export special form as
in:

(export relate)

(define (relate x y)
(cond ((< x y) -1)

((> x y) 1)
(else 0)))

As those two approaches have advantages and supporters, Jazz-
Scheme supports both.

Built entirely in Jazz
Once the porting to Scheme was completed, around 2008, a long-
standing dream had finally been fulfilled, that is to have a complete
Scheme development system written entirely in itself. Indeed, hav-
ing a system written in itself has many advantages:

Development cycle The most obvious advantage is, of course,
the fast development cycle made possible by the use of a high-
level language and IDE. It is not only having access to high-level
constructs but also having only one language to focus on, both for
implementation and as a user.

In the end, it all boils down to rapid evolution of both the
language and the IDE. For example, often when we see something
which could be improved in Jedi, we just do it live inside the IDE
itself, test, correct, test and commit without restarting the IDE. With
this fast development cycle, it is not uncommon to see 20+ commits
per day on the JazzScheme repository with few developers.

Can be run fully interpreted In terms of the development cycle,
great efforts were dedicated to the development of JazzScheme to
make sure everything could be run interpreted without having to go
through the slow process of compiling. Even such low-level parts
of the system as the module system, the code walker and even the
kernel can all be run 100% interpreted. For instance, even when
adding new features to the module system, we often just modify the
code, test, modify, test, ... and only when everything works do we
build the system, which makes for a very fast development cycle.

Debugging Another advantage from the switch to Gambit was
having access to a high-level debugger. The contrast between the
C++ world and the Gambit world was never as sharp as when facing
a difficult crash to debug. Developing the old Jazz Windows UI was
a painful process, full of crashes, trying to reproduce the problem
in the C++ debugger, and then hunting down arcane C++ structures
far from the user code. The first time the Gambit debugger popped



up instead of what would have been a crash in the old system, with
a high-level view of the stack, display of frames, ... the bug was
solved in minutes. What a contrast!

Nowadays it is rare to end up in the Gambit debugger as Jazz-
Scheme’s remote debugger handles almost all cases. It still happens
sometimes that an internal bug ends up crashing the remote debug-
ger, but then Gambit is still there to catch the problem and offer a
convenient debugging environment.

Openness to the community The aforementioned language,
Prisme, only had an interpreter. Because of that, a large propor-
tion of the code (even parts as high-level as the text editor) was
written in C. This was always one of the sorest points for the team
of developers. Not having easy access to the source code and see-
ing an opaque C frame in the debugger made their work a lot
harder. It also stopped them from being able to contribute fixes.
This was especially painful because at that time, they were in ex-
cellent position to debug the problem. That realization influenced
greatly JazzScheme’s design to make it a language that could be
compiled efficiently. With the porting of the C++ kernel to Gambit,
JazzScheme users now have access to 100% of the code used to
implement the system.

This can have far reaching implications:

• Learning: New users get access to a vast library of high-quality
code to learn.

• Contributing: Contributing is easy as there is no “other” lan-
guage and development system to learn.

• Debugging: Having access to all source code can improve de-
bugging greatly.

• Deployment: Deployment can be made more modular as the
system does not have to include a large kernel. This is especially
important when working on large-scale projects.

Live by your word Dissatisfaction is one of the greatest driving
forces in development. But how can you be dissatisfied with your
language or IDE if they are not the tools you’re using to develop
them, like Visual Basic being coded in C. Using JazzScheme and
Jedi to develop JazzScheme is a great driving force behind its
development. There is rarely a single day where we do not improve
JazzScheme or Jedi in some way.

Tribute to Lisp Above all other factors, building everything in
JazzScheme is I think the greatest tribute to this extraordinary
language that is Lisp!

Emacs
Lets relate the influence which Emacs had on Jedi over the years.

Emacs is one of the greatest development environments avail-
able, especially for Lisp languages. As such, almost everyone who
has come to work with Jedi over the years comes from an Emacs
background. Over and over these individuals have forced Jedi to
evolve to meet Emacs’s high standards of Lisp editing. In its lat-
est version, Jedi now supports almost all Emacs core features and
bindings, but there is no doubt that the next programmer who starts
using Jedi will find tons of Emacs features he’d like to be added!
Many thanks to Emacs and its dedicated team of maintainers.

The present: Auphelia
Last year, at the Montreal Scheme Lisp User Group (MSLUG), I
met Christian Perreault an open-minded entrepreneur who had been
looking for more than 10 years for a new technology which would
enable him to create the next generation of his Enterprise Resource
Planning (ERP) software. Was it a match made in heaven? After
many intense discussions and evaluations lasting well over a month,
Christian finally decided to use JazzScheme for the ERP backend,

but reserved his decision on the UI frontend between QT and Jazz-
Scheme. Since then, the decision has been made to use JazzScheme
across the whole system both for the backend and the UI frontend.

Also, I always had the dream to set up a work environment
which would attract talented individuals from the Lisp world to
work together on fun and challenging projects, and ultimately show
the world what a Lisp-based development system could do. With
Auphelia [2] this dream is actually coming true! Here is a quick
presentation of the talented individuals who have already collabo-
rated with us in the context of Auphelia:

Marc Feeley Marc Feeley is the author of Gambit, the Scheme
system which JazzScheme is built upon. Being dedicated to the
evolution of Gambit, Marc hasn’t contributed directly to Jazz-
Scheme but he is always a great source of information and insight
in intense brainstorming sessions about difficult issues.

Alex Shinn Alex Shinn is the well-known author of the IrRegex
library [10] implementing regular expressions in pure Scheme. He
is also the author of many other useful Scheme libraries and also
recognized for his deep understanding of the intricacies of hygiene
in a functional language such as Scheme.

Alex ported his IrRegex library to JazzScheme and integrated
it into Jedi. He also added hygienic macro support to the module
system and to the language in general.

The team Apart from those part-time collaborators, Auphelia in-
cludes at the time of writing this article a team of five programmers
working full-time on the project. From that team, one to sometimes
up to three work full-time on evolving open-source JazzScheme to
support the various needs of the project.

3. Overview of the Jazz platform
JazzScheme is a language and development system based on ex-
tending Scheme and the Gambit system. Here is a brief overview
of Gambit and the Jazz platform.

3.1 Gambit
JazzScheme is entirely built using Gambit-C, a high-performance,
state-of-the-art R5RS-compliant Scheme implementation. Gambit
offers a rich library including an API for accessing the compiler and
interpreter. It conforms to the IEEE Scheme standard and imple-
ments 16 of the Scheme Requests for Implementation (SRFI) [14].

Our experience working with Gambit has confirmed its high
level of reliability. As extensive as our use of it was, very few bugs
were found over the past three years, and the few ones we came
across were promptly addressed by its maintainer.

Gambit has shown it has all the essential features to make it the
ideal platform for implementing a development system like Jazz-
Scheme. The ability to load compiled or interpreted code inter-
changeably is key to the fast development cycle promoted by Jazz.
Gambit’s capability to report errors in a precise and configurable
manner allowed us in the debugger to present the frames in a way
which closely matches the Jazz source code, abstracting away the
artifacts of the macro expansion of Jazz into Scheme.

Implementing a responsive GUI-based application like an IDE
is demanding in terms of performance and Gambit was up to the
challenge. In particular, Gambit’s efficient cooperative thread sys-
tem was key to implementing a smooth user experience in the IDE.
Also, porting JazzScheme and the UI framework to Linux / X11
showed that Gambit’s implementation of all those features was
highly portable.

3.2 JazzScheme
JazzScheme is a development system based on extending Scheme
which includes a module system, hygienic macros, object-oriented



programming, a full-featured cross-platform application frame-
work, and a build system which creates executable binaries for
Mac OS X, Windows and Linux.

JazzScheme’s object-oriented system supports single-inheritance
with multiple interfaces, similar to Java, generic multi-dispatch
functions à la Common Lisp, and metaclasses.

From the start, JazzScheme was designed to support highly
interactive development:

• JazzScheme supports run-time redefinition of functions, meth-
ods, classes, etc. In Jedi, pressing Ctrl-Enter will send the se-
lected block of code to the currently focused process for evalu-
ation.

• Interpreted and compiled code can be loaded interchangeably.
The JazzScheme kernel will automatically load a compiled
version when one is up-to-date and load the code interpreted
otherwise. The build system compiles each unit into a loadable
object (i.e. a dynamic/shared library). Alternatively, the build
system is capable of linking multiple units into a single loadable
library, thus improving application load time.

The Jazz platform is comprised of a rich set of libraries, includ-
ing:

• a sophisticated component system,
• an extensive, cross-platform UI library,
• full access to Cairo 2D graphics,
• a Lisp-based markup language,
• regular expressions,
• database access,
• networking,
• remoting,
• a crash handler in case of unrecoverable exceptions

4. Overview of the Jedi IDE
Jedi is a modern, programmable Lisp-based IDE with advanced
features. Jedi is written entirely in JazzScheme and is one of the
most complex applications built with JazzScheme.

Jedi has a code editor which supports a number of languages.
Although Jedi is at its best while editing Jazz code, it also supports
other Lisp dialects (Scheme, obviously, and Common Lisp), as well
as C/C++, Java, JavaScript, TEX and others. For Lisp languages,
Jedi supports syntax highlighting, Emacs-style editing [9], source
code tabulation, customizable symbol completion and much more.

Common Lisp users will be happy to know that Jedi is soon to
implement Emacs’ Swank protocol for remote debugging, making
it a full-fledged Common Lisp IDE.

Jedi supports rich editing modes and functions (Section 4.1),
and integrates a number of useful tools for interacting with Jazz
processes such as a remote debugger (Section 4.2) and profiler
(Section 4.3), as well as a number of reflection tools (Section 4.4).

4.1 Jedi basics
Workspaces Jedi’s user interface is customizable through the
concept of workspaces which define the structure of the UI com-
ponents and determines which tools are presented to the user.
Workspaces are groups of related windows, tools, etc., that are
activated together. Jedi includes a primary workspace for editing
text, as well as a debugger workspace (shown in Figure 5). There is
also a groupware workspace to compare and merge files and direc-
tories, and a designer workspace to design graphical user interfaces
for Jazz applications. At the right-hand-side of the IDE’s toolbar is
a set of buttons used to switch between workspaces. Workspaces
are specified in a declarative sub-language of Jazz which allows

the user to conveniently customize the IDE by changing the con-
tainment structure and properties of tool panels, splitter windows,
etc.

Projects and files Projects and their source files are displayed
in the workbench, appearing in the left-most panel of the IDE.
A project is an entity that Jedi can build and run, possibly under
control of the debugger. Projects are workbench entities that con-
tain source files and resources. For every project, Jedi will build
a full cross-reference database (its catalog) of every source file in
that project. Note that projects can contain source code from any
language, and Jedi will only catalog the source files that it knows
about.

Cross-references Jedi maintains a database of cross-references in
the code. This is particularly useful for exploring code. In Jedi, by
placing the caret on a particular symbol in the code you can:

• Go to the symbol’s definition (by pressing F12). The definition
is opened in the editor; if multiple definitions of the symbol
are found (e.g. a method with the same name can be found in
different classes), they are listed in the search results window,
as shown in Figure 1.

• Find references to this symbol (by pressing Shift-F12). Again,
if only one reference is found, this reference is opened in the
editor, otherwise the references/call sites are listed in the search
results window.

Editing code
In addition to the cross-reference database, Jedi offers a rich set of
code navigation facilities, allowing the user to:

• Browse the code by chapters (where chapters and sections are
indicated by comments in the source code) or by following the
hierarchy of declarations.

• Navigate backward/forward in the browsing history.
• Browse the class hierarchy.
• Perform an incremental search. Jedi has extensive search-and-

replace capabilities with regular expressions support and textual
macro recording for custom replace actions (cf. Section 4.5).

Code evaluation Jedi has a number of features for editing Lisp
code that can enhance programmer productivity. In particular, you
can evaluate code by pressing Ctrl-Enter in the text, and the expres-
sion where your cursor is will be evaluated in the focused process.
You can evaluate a method, and the effect is to update the method’s
definition in the run-time system. The next time the method will be
called, the new definition will be applied.

Text manipulations Jedi has extra text editing features familiar
to Emacs users, such as the clipboard ring. You can copy multiple
values to the clipboard (with Ctrl-C, applied repeatedly). Alt-V
cycles in the clipboard ring and pastes, while Ctrl-V is the normal
paste operation, which pastes the value at the current position in the
clipboard ring.

4.2 Debugger
Jedi has a remote debugger with full source-level information. An
advantage of remote debugging is that you are debugging your
application exactly as itself with all its features: windows, menus,
connections, ports, threads, ... instead of simulating inside the IDE
its various features.

The debugger reports exceptions occurring in the remote pro-
cesses and can display detailed information about their execution
stack including the state of all variables in all active frames. The
user can browse the individual frames and evaluate expressions in
their context, and the IDE will highlight call sites in the code. Jedi’s



debugger workspace (Figure 5) is composed of four panels at the
top of the IDE which show, respectively:

1. The list of processes connected to the debugger. By default the
Jedi process is connected to its own debugger, so if an exception
occurs in Jedi, it will be presented in the debugger. There is also
a distinguished process called the focused process which will be
used when you evaluate code with Ctrl-Enter.

2. The list of threads in the focused process, with an icon indicat-
ing the thread’s state. You can restart a thread stopped in an ex-
ception by right-clicking the thread and selecting a restart such
as “Resume event loop”.

3. The list of frames in the execution stack of the selected thread,
as well as any exception on which the thread is stopped. This
panel will also propose all available restarts in that thread (sim-
ilar to the concept of restart in Common Lisp) when displaying
an exception or break point.

4. The variables in the selected frame and their values. The state
of structured objects is presented in a tree-like fashion as this
pane is an instance of the object explorer (cf. Section 4.4)

Process snapshots The state of a Jazz process can be saved to a
snapshot file, which can later be loaded into Jedi’s debugger. Jazz
applications actually have a crash handler which generates a pro-
cess snapshot in case an unrecoverable exception occurs. Process
snapshots once loaded in the debugger are presented in the same
manner as for live processes, the only limitation being that objects
can only be explored to some user-controlled depth.

4.3 Profiler
Jedi supports a remote profiler that is controlled using start/stop
buttons that activate the profiler in the focused process, and presents
the profile results as shown in Figure 2. When selecting an entry in
the results list, Jedi automatically shows the call site in the source
code. The profile results shown were collected by statprof [19], a
statistical profiler for Gambit. The profiler distributes the running
time according to the top n frames of the execution stack, so that
you can identify not only which functions were called most often,
but also what function called them, to a user-controlled depth.

4.4 Reflection tools
View explorer In Jedi (or other Jazz applications), if you are cu-
rious about what a particular widget does or how it is implemented,
you can quickly find out using the view explorer, which gives in-
formation about a graphical component such as its class and prop-
erties. When the view explorer is activated (by pressing F8), you
drag the cursor over the views in a window to select a view. Af-
ter a second, a tooltip displaying information on a particular view
is popped, as shown in Figure 3. You can then also get information
on the enclosing components in the hierarchy by pressing the up ar-
row which selects the parent component. This way you can quickly
find out about the structure of a complex user interface window and
browse its implementation.

Object inspector The inspector tool used in the debugger allows
the user to inspect the state of any object of a debuggee process.
The inspector presents a list of the slots and properties of an object
with their associated values. Object slots bound to jazz objects are
recursively shown as trees. Structured values such as lists and vec-
tors are shown as trees with their individual components divided.
Note that the inspector creates the tree in a lazy fashion, so as to
even out response time and avoid excessive overhead in memory.

4.5 Search and replace
It is not uncommon that a symbol such as a class name or method
needs to be changed across the entire code base of Jazz which

consists of about 1500+ files of Jazz and Scheme code. To support
tasks like these, Jedi offers many search and replace functionalities
accessed using the widget shown in Figure 4. It supports many
modes and functions to specify custom replace actions and control
the scope of the search.

You can specify multiple search/replace pairs that will be ap-
plied simultaneously. The search string can be an arbitrary regular
expression (when the “Regexp” mode is selected), and you can re-
fer to parts of the matching expression in the replace string. More-
over you can specify custom replace actions by selecting the “Play
recording” mode, in which case the textual macro will be applied
with the search string as the current selection.

By default, the scope of the search is limited to the text dis-
played in the active window, but can be set to span all the Jazz
or Scheme files registered in the workbench, or to all the files in a
given directory and/or the files with a given extension. It is also pos-
sible to search for definitions or references in specific projects of
the workbench; for instance, you can find all text-related UI classes
in Jazz by selecting the project jazz.ui and entering Text as search
key.

5. Conclusion
In conclusion, JazzScheme has evolved from a dream to be able
to use Lisp in everyday work to create fun, complex and engaging
software to a mature Lisp-based development system used to build
industrial software such as an Enterprise Resource Planning (ERP)
application.

It is the authors’ hope that JazzScheme ends up playing a small
part in advancing the awareness to this incredible gem called Lisp
which Lispers have been using for more than 50 years now. Not
by telling about Lisp but by making it possible to create complex
high-quality software so easily and rapidly that the programming
community will ultimately and naturally be drawn to it.

References
[1] Allegro Common Lisp. http://www.franz.com/products/

allegrocl/.
[2] Auphelia Technologies. http://www.auphelia.com/.
[3] Bigloo homepage. http://www-sop.inria.fr/mimosa/fp/

Bigloo/.
[4] The Chicken Wiki. http://chicken.wiki.br/.
[5] Clozure CL. http://openmcl.clozure.com/.
[6] CUSP, a Lisp plugin for Eclipse. http://www.bitfauna.com/

projects/cusp/cusp.htm.
[7] Digitool, inc. http://www.digitool.com/.
[8] Gambit-C, a portable implementation of Scheme. http://www.

iro.umontreal.ca/~gambit/doc/gambit-c.html.
[9] GNU Emacs - GNU Project - Free Software Foundation. http:

//www.gnu.org/software/emacs/.
[10] IrRegular Expressions. http://synthcode.com/scheme/

irregex/.
[11] LispWorks. http://www.lispworks.com/.
[12] PLT Scheme. http://www.plt-scheme.org/.
[13] Racket. http://www.racket-lang.org/.
[14] Scheme Requests for Implementation. http://srfi.schemers.

org/.
[15] N. I. Adams, IV, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.

Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, G. L. Steele, Jr., G. J. Sussman,
M. Wand, and H. Abelson. Revised5 report on the algorithmic
language Scheme. SIGPLAN Notices, 33(9):26–76, 1998.

[16] Jérome Chailloux, Mathieu Devin, and Jean-Marie Hullot. LELISP,
a portable and efficient LISP system. In LFP ’84: Proceedings of the



1984 ACM Symposium on LISP and functional programming, pages
113–122, New York, NY, USA, 1984. ACM.

[17] Marc Feeley and James S. Miller. A parallel virtual machine for
efficient Scheme compilation. In In Lisp and functional programming,
pages 119–130. ACM Press, 1990.

[18] Daniel P. Friedman and Matthias Felleisen. The little LISPer (2nd
ed.). SRA School Group, USA, 1986.

[19] Guillaume Germain. statprof. http://www.iro.umontreal.ca/
~germaing/statprof.html.

[20] Sonya Keene. Object-Oriented Programming in Common Lisp: A
Programmer’s Guide to CLOS. Addison-Wesley, 1988.

[21] Guy L. Steele. Common LISP: The Language. Digital Press, Bedford,
MA, 2. edition, 1990.

[22] Daniel Weinreb and David Moon. The Lisp Machine manual. SIGART
Bull., (78):10–10, 1981.



Figure 1. References to a program symbol shown in the Search Results pane.

Figure 2. Profiler results.

Figure 3. View explorer.

Figure 4. Search and replace.



Figure 5. Debugger workspace.


